Adaptive User Modeling for Filtering Electronic News

نویسندگان

  • Michael A. Shepherd
  • Carolyn R. Watters
  • Ajitha T. Marath
چکیده

A prototype system for the fine-grained filtering of news items has been developed and a pilot test has been conducted. The system is based on an adaptive user model that integrates stereotypes and artificial neural networks. The stereotypes are based on newspaper sections and sub-sections, along with editor specified and user specified keywords. Eight subjects trained the system over six days of news papers (986 news items) and then tested the system on a seventh day (171 news items). Five users were simply asked to ‘read the news’ while three users developed ‘corporate’ profiles with explicit information needs. The evaluations suggests that such an integrated adaptive user model did, in fact, reflect the difference between the two different types of task. In both cases, the results also reflect the quality of the training of the adaptive neural network by the user in creating the user profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal

Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...

متن کامل

Lessons From Reading E-News for Browsing the Web: The Roles of Genre and Task

An appreciation of the roles of genre and task is important in understanding how people browse the Web. Genre is characterized by content and form and is intimately linked to the task at hand. In moving from ink-on-paper to E-News, The Electronic News Delivery Project examined both user interfaces and personalized filtering for electronic newspapers. Time-and-again, research results from user s...

متن کامل

Intelligent Information Filtering via Hybrid Techniques : Hill Climbing , Case - Based Reasoning , Index Patterns , and Genetic Algorithms

As the size of the Internet increases, the amount of data available to users has dramatically risen, resulting in an information overload for users. This work shows that information overload is a problem, and that data is organized poorly by existing browsers. To address these problems, an intelligent information news filtering system named INFOS (Intelligent News Filtering Organizational Syste...

متن کامل

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

Designing TV Viewer Stereotypes for an Electronic Program Guide

This paper describes how a user modeling knowledge base for personalized TV servers can be generated starting from an analysis of lifestyles surveys. The aim of the research is the construction of well-designed stereotypes for generating adaptive electronic program guides (EPGs) which filter the information about TV events depending on the user’s interests.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002